
PERL6 IN 45+45 MINUTESPERL6 IN 45+45 MINUTES
☜ PART 2 ☞☜ PART 2 ☞
by Arne Sommer

Nordic Perl Workshop
September 2018

Oslo

This presentation is available online:
https://npw2018.perl6.eu/

https://npw2018.perl6.eu/

ABOUT MEABOUT ME
I have a master's degree in Computer Science.

I have programmed perl since 1989.
perl3 and 4 (1989-1995), perl5 (1994-), and perl6 (2015-).

Name: Arne Sommer
Web: bbop.org
Email: arne@bbop.org
CPAN: ARNE
GitHub: arnesom

ABOUT PERL6 ABOUT PERL6 (PART 1)(PART 1)

VARIABLES & VALUES VARIABLES & VALUES (PART 1)(PART 1)

PROCEDURES PROCEDURES (PART 2)(PART 2)

FILES & IO FILES & IO (PART 2)(PART 2)

PROCEDURESPROCEDURES
Define a procedure like this:

And call it like this:

Or, if you do not like parens:

sub add ($first-value, $second-value)

{

 return $first-value + $second-value;

}

> my $result = add(1, 2);

3

> my $result = add 1, 2;

3

PROCEDURES (2)PROCEDURES (2)
What if we try with a text string?

The string "10" is converted to a number (10), and it
works.

It works because "10" can be converted to a number.

> my $result = add "10", 2;

12

PROCEDURES (3)PROCEDURES (3)
But if we try something that cannot be converted, we

get a run time error:
> my $result = add "ten", 2;

Cannot convert string to number: base-10 number must begin

with valid digits or '.' in '⏏ten' (indicated by ⏏)

 in sub add at <unknown file> line 1

TYPE CONSTRAINSTYPE CONSTRAINS
We can use a type constraint to prevent that (and get a

compile time error instead):
sub add (Numeric $first-value, Numeric $second-value)

{

 return $first-value + $second-value;

}

> my $result = add "10", 2;

===SORRY!=== Error while compiling:

Calling add(Str, Int) will never work with declared \

 signature (Numeric $first-value, Numeric $second-value)

------> my $result = ⏏add "10", 2;

MULTIPLE DISPATCHMULTIPLE DISPATCH
We can have different versions of a procedure, with

different parameter lists (or «signatures»):

Or, shorter (without the «sub»):

With type constraints:

multi sub do-something ($file1) { ... }

multi sub do-something ($file1, $file2) { ... }

multi do-something ($file-name) { ... }

multi do-something ($file1, $file2) { ... }

multi add (Numeric $value1, Numeric $value2) { ... }

multi add (Str $value1, Str $value2) { ... }

PROCEDURE ARGUMENTSPROCEDURE ARGUMENTS
Values passed to a procedure are read-only by default:

File: increment

sub increment ($value)

{

 $value++;

 return $value;

}

say increment(12);

$ perl6 increment

Cannot resolve caller postfix:<++>(Int);

the following candidates match the type

but require mutable arguments:

 (Mu:D $a is rw)

 (Int:D $a is rw)

IS RWIS RW
The error message gives a hint: is rw («is read write»).
This is a trait, that we can add to parameters. Let us

try:
File: increment2

sub increment ($value is rw)

{

 $value++;

 return $value;

}

say increment(12);

$ perl6 increment2

Parameter '$value' expected a writable container,

but got Int value

 in sub increment at increment2 line 3

 in block <unit> at increment2 line 9

IS RW (2)IS RW (2)
And this fails as well. The problem is that is rw tells the
procedure that it can change the variable in the calling
code, but we called it with a value. And values cannot

be changed:
> 12 = 13;

Cannot modify an immutable Int (12)

 in block <unit> at <unknown file> line 1

IS RW (3)IS RW (3)
This works:

But the side effect, that the procedure call changes the
value of a variable outside itself without an

assignment, is something that should be avoided.

It will fail again if you try to adjust the value passed:

> my $value = 12;

> my $result = increment($value);

> say $value # -> 13

> my $result = increment($value + 1);

IS COPYIS COPY
The is copy trait is more fool proof. You get a real

variable, with a copy of the value passed to it, and it
(the copy) can be changed at will.

File: increment3

sub increment ($value is copy)

{

 $value++;

 return $value;

}

say increment(12);

$ perl6 increment3

13

OPTIONAL ARGUMENTSOPTIONAL ARGUMENTS
It is possible to specify a default value for an

argument, making it optional:

We can have more of them:

It is not possible to assign a value to $optional2 and
not $optional1.

sub do-something ($value, $optional = "") { ... }

sub do-something-else ($value, $optional1 = 5,

 $optional2 = $value * 2) { ... }

> do-something-else(11, 101);

NAMED ARGUMENTSNAMED ARGUMENTS
A procedure taking many arguments can be a problem.

Someone will sooner or later get the order of the
arguments wrong.

Named arguments, specified by prefixing the variable
with a :, removes that problem, as the order is now

irrelevant:
> sub aaa (:$a, :$b) { return 2*$a + $b; }

> aaa(a => 2, b => 3);

7

> aaa(b => 3, a => 2);

7

NAMED ARGUMENTS (2)NAMED ARGUMENTS (2)
Named arguments makes it possible to have many

optional arguments, and you can use as many or few
as you want, regardless of order:

> sub bbb (:$a = 12, :$b = 13, :$c = 12, :$d = 13)

> {

> return $a + $b + $c + $d;

> }

> aaa(a => 1);

> aaa(d => 3, a => 4);

NAMED ARGUMENTS (3)NAMED ARGUMENTS (3)
You can mix normal (or positional) and named

arguments, but the positional ones must come first:
> sub ccc ($a, $b, :$c, :$b) { ... }

NAMED MANDATORYNAMED MANDATORY
ARGUMENTSARGUMENTS

Use is required or the ! postfix shortform:

Default values are meaningless for mandatory arguments. The compiler will not protest,
though. So :$d is required = False is legal, even if the default value is useless.

> sub ccc ($a, $b, :$c!, :$d is required) { ... }

ADVERBSADVERBS
It is possible to use an alternative adverb syntax when

specifying named arguments in a procedure call:

Adverbs works with the built-in functions as well.

> aa(a => 1, b => 2);

> aa(:a(1), :b(2));

> aa(:1a, :2b);

> dd(a => "r", b => "h");

> dd(:a<r> , :b<h>);

HELLO, <INSERT NAME HERE>!HELLO, <INSERT NAME HERE>!
Getting input from the command line:

@*ARGS is a dynamic variable.

file: hello-args

say "Hello, @*ARGS[0]!";

> perl6 hello-args NPW

Hello, NPW!

HELLO, MAINHELLO, MAIN
We can use the special MAIN procedure instead of

accessing @*ARGS:

The compiler will execute any code in the program
first, and call the MAIN routine a�erwards. It is usually

not a good idea having any code outside MAIN.

File: hello

sub MAIN ($name)

{

 say "Hello, $name!";

}

HELLO, ERROR HANDLINGHELLO, ERROR HANDLING
Declare MAIN with as many arguments as you want,

with the names you want. The program will fail with a
usage message if you give the wrong number (or types)

of arguments to the program:
$ perl6 hello

Usage:

 hello <name>

$ perl6 hello all

hello, all!

$ perl6 hello all you

Usage:

 hello <name>

EVEN BETTER USAGE MESSAGESEVEN BETTER USAGE MESSAGES
The name of the program and the variable name(s)
may not say it all. Add a special comment line just

above the MAIN procedure(s):
File: hello-usage

#| Person to greet

sub MAIN ($name)

{

 say "Hello, $name!";

}

$ perl6 hello-usage all you

Usage:

 hello-usage <name> -- Person to greet

ABOUT PERL6 ABOUT PERL6 (PART 1)(PART 1)

VARIABLES & VALUES VARIABLES & VALUES (PART 1)(PART 1)

PROCEDURES PROCEDURES (PART 2)(PART 2)

FILES & IO FILES & IO (PART 2)(PART 2)

READING A FILEREADING A FILE
This program will read a file specified as argument,

and print all the lines containing the letter «a»:

All functions that reads something strips off trailing newline character(s) by default. (And
«say» adds them back on.)

File: echo-file-MAIN

sub MAIN ($file-name)

{

 my $fh = open $file-name;

 for $fh.lines -> $line

 {

 say $line if $line.contains("a");

 }

 $fh.close;

}

IO.LINESIO.LINES
We do not have to open (and close) a file explicitly, just

to read the content:
File: echo-file-lines

sub MAIN ($file-name)

{

 for $file-name.IO.lines -> $line

 {

 say $line if $line.contains("a");

 }

}

LINES IN ONE LINE OF CODELINES IN ONE LINE OF CODE
We can use lines as a procedure without arguments.

(We used it as a method in the previous example.) This
will read the content of the file(s) specified on the

command line:

No need for MAIN, and it will handle as many files as
we want:

File: echo-all

.say for lines;

$ perl6 echo-all /etc/*

LINES IN ONE LINE OF CODE (2)LINES IN ONE LINE OF CODE (2)
Note that used like this we have no way of getting the
file names, or know when one file ends and the next

begins.

If invoked without arguments, it will wait for input,
and copy it back verbatim. Use <Control-c> to exit.

We will get a warning if one or more files is a directory:
'NPW18/' is a directory, cannot do '.open' on a directory

 in block <unit> at echo-all line 3

LINES IN ONE LINE OF CODE (3)LINES IN ONE LINE OF CODE (3)
We can pipe input to it if we want, and these lines are

equal:
$ perl6 echo-all file1.txt file2.txt

$ cat file.txt file2.txt | perl6 echo-all

ADDING THE "A" FILTERADDING THE "A" FILTER
You may have noticed that I have forgotten the

contains("a") filter. As we no longer have a loop, where
do we apply an if?

We cannot. But we can use grep:

The curlies are there to tell grep that we pass it code
directly, instead of giving a procedure.

File: echo-grep

lines.grep({ .contains("a") }).say;

MAIN TAKES SCALARS ONLYMAIN TAKES SCALARS ONLY
Arguments passed on the command line are always

scalars, but we can use a so called slurpy (or «variadic
argument») array to grab them all by adding a * before

the list argument: *@files:

We have added MAIN for the usage message only. The
arguments are ignored.

sub MAIN (*@files)

{

 lines.grep({ .contains("a") }).say;

}

SLURPY GOTCHASLURPY GOTCHA
Note that the slurpy argument allows zero arguments,
so this program will behave in the same way as «echo-
grep». That means that the usage message will never

be triggered (and as such the use of «MAIN» is useless).

We can force it to demand at least one argument:

But good luck explaining the code...

sub MAIN ($file1, *@files) { ... }

USING A TYPE CONSTRAINTUSING A TYPE CONSTRAINT
But using a type constraint gives self-explaining code:

File: echo-grep2

#| One or more files to search for lines with the letter 'a'

sub MAIN (*@files where @files.elems >= 1)

{

 lines.grep({ .contains("a") }).say;

}

SLURPSLURP
It is possible to read the whole file at once (non-lazily):

All strings in perl6 are Unicode, but it is possible to
read (and convert) files with other encodings:

More about supported encodings: https://docs.perl6.org/routine/encoding

> my $content = slurp "/home/perl6/bin/echo-file";

> my $contents = slurp "/home/arne/echo.c", enc => "latin1";

FILE CONVERSIONFILE CONVERSION
Excercise: Write a file conversion program. Input is in
latin1 (iso-latin-1), and output is in Unicode (utf-8).

Hint: Do not try writing to a file (as we have not shown
how to do that yet). Writing to the screen (STDOUT) is
ok, and we can use the shell to save it for us like this:

$ perl6 isolatin2unicode isolatinfile > unicodefile

FILE CONVERSION (2)FILE CONVERSION (2)
Solution(s):

File: isolatin2unicode

sub MAIN ($file-name)

{

 say slurp $file-name, enc => "latin1";

}

File: isolatin2unicode2

sub MAIN ($file-name)

{

 .say for $file-name.IO.lines(enc => "latin1");

}

File: isolatin2unicode3

.say for lines(enc => "latin1");

INPUT OUTPUT - IOINPUT OUTPUT - IO
On a Unix-like system we have the following

predefined filehandles:

$*IN Standard input filehandle (STDIN)
$*OUT Standard output filehandle (STDOUT)
$*ERR Standard error filehandle (STDERR)

PRINT, SAY AND NOTEPRINT, SAY AND NOTE
print and say prints to the specified filehandle, and to

$*OUT if used without one.

note prints to STDERR (the same as $*ERR.say). Do not
use it on a filehandle!

WRITING FILESWRITING FILES
We can expand the file conversion program to write to
a file, if given. The first argument to the program is the
file name to read from, as before, and a second one (if

given) is the file name to write to.

If we don't specify the second argument, it will print to
the screen as before:

$ perl6 isolatin2unicode4 isolatinfile unicodefile

$ perl6 isolatin2unicode4 isolatinfile > unicodefile

WRITING FILES (2)WRITING FILES (2)
We can use a filehandle, open the file in write mode,

and use say on the filhandle:

Remember the adverbial syntax; :w is the same as w => True.

But we'll use the spurt command instead. It is the
opposite of lines, as it writes all the text we give it to

the specified file.

> my $fh = open :w, '/tmp/some-file.txt';

> $fh.say "Hello";

> $fh.close;

SPURTSPURT

We could have written $file-out = Nil instead, but an
empty string is ok.

No error checking of any kind, so what can go wrong?

File: isolatin2unicode4

sub MAIN ($file-in, $file-out = "")

{

 $file-out

 ?? spurt $file-out, slurp $file-in, enc => "latin1"

 !! say slurp $file-in, enc => "latin1";

}

SPURT OVERWRITESPURT OVERWRITE
Note that spurt happily overwrites existing files,

without warning.

We can instruct spurt to fail if the file exists:

You can add parens if you are confused:

spurt $out, :createonly, slurp $in, enc => "latin1";

spurt($out, :createonly, slurp($in, enc => "latin1"));

SPURT APPENDSPURT APPEND
We also have append mode, that adds the text to the

end of an existing file:

This is useful when writing to log files.

spurt $file-out, :append, slurp $file-in, enc => "latin1";

GETGET
get reads a single line from the specified filehandle. It

returns Nil if no more input is available.

Read one line from standard input:

Read one line from a file:

my $line = $*IN.get;

my $fh = open 'filename';

my $line = $fh.get;

$fh.close;

GET GOTCHAGET GOTCHA
A standalone get (without using it on a filehandle)

behaves just as lines.

It will read from the files given on the command line,
and if none are given from $*IN instead.

See the special variable $*ARGFILES for further
information.

PROMPTPROMPT
prompt is the same as $*IN.get with an optional text

output.
sub prompt-reimplemented ($message = "")

{

 $*OUT.say $message if $message;

 return $*IN.get;

}

File: prompt

my $name = prompt "What's your name? ";

say "Hi, $name! Nice to meet you!";

END OF PART 2END OF PART 2
Thank you for your attention.

This presentation is available online:
https://npw2018.perl6.eu/

https://npw2018.perl6.eu/

