
PERL6 IN 45+45 MINUTESPERL6 IN 45+45 MINUTES
☜ PART 1 ☞☜ PART 1 ☞
by Arne Sommer

Nordic Perl Workshop
September 2018

Oslo

This presentation is available online:
https://npw2018.perl6.eu/

https://npw2018.perl6.eu/

ABOUT MEABOUT ME
I have a master's degree in Computer Science.

I have programmed perl since 1989.
perl3 and 4 (1989-1995), perl5 (1994-), and perl6 (2015-).

Name: Arne Sommer
Web: bbop.org
Email: arne@bbop.org
CPAN: ARNE
GitHub: arnesom

ABOUT PERL6 ABOUT PERL6 (PART 1)(PART 1)

VARIABLES & VALUES VARIABLES & VALUES (PART 1)(PART 1)

PROCEDURES PROCEDURES (PART 2)(PART 2)

FILES & IO FILES & IO (PART 2)(PART 2)

RAKUDO PERL6RAKUDO PERL6
Rakudo is a production ready implementation of

Perl6, written in NQP («Not Quite Perl»), running on
the dedicated MoarVM («Metamodel On A Runtime»)

virtual machine.

Rakudo has monthly releases.

Implementations of Rakudo running on jvm and
javascript (node.js) are not as complete.

RAKUDO STARRAKUDO STAR
Rakudo Star is released every third month. This is

Rakudo bundled with documentation (the «p6doc»
command) and a selection of useful modules

(especially the module installer «zef»).

VOLUNTEERSVOLUNTEERS
The perl6 specification and development process has

been done by volunteers. There are no company or
rich uncle behind this.

That is quite impressive!

SPEEDSPEED
Rakudo is generally slower than perl5, but much faster

than just a year ago.

The developer focus has been: «Make it right, then
make it fast».

Perl6 is fully Unicode compliant, making it slower than
it could have been.

MORE INFORMATIONMORE INFORMATION
«p6doc» online:
The excellent «Perl6 Weekly» gives weekly
summaries of (almost) everything related to perl6:

Ask questions on perl6 issues on the #perl6 IRC
channel on irc.freenode.net. See

 for more
information

https://docs.perl6.org

https://p6weekly.wordpress.com/

https://perl6.org/community/irc

https://docs.perl6.org/
https://p6weekly.wordpress.com/
https://perl6.org/community/irc

REPLREPL
Run perl6 without any arguments to start it in

interactive, or REPL (Read-Eval-Print Loop), mode.

Note that REPL mode always displays a value. If your
code prints a value, that is fine. But if not, REPL will

print whatever the last expression evaluated to.

$ perl6

To exit type 'exit' or '^D'

> say 12; my $a = False;

12

> my $a = False;

False

INSTALLING RAKUDO STARINSTALLING RAKUDO STAR
Windows & Mac: Use the installation binary. See

Linux: Use the normal package system (Debian,
Centos, Fedora, openSUSE, Ubuntu and Alpine). See

More information:

Or use Docker:

https://rakudo.org/files/

https://nxadm.github.io/rakudo-pkg/
https://perl6.org/downloads/

http://perl6maven.com/rakudo-perl6-with-docker

https://rakudo.org/files/
https://nxadm.github.io/rakudo-pkg/
https://perl6.org/downloads/
http://perl6maven.com/rakudo-perl6-with-docker

ABOUT PERL6 ABOUT PERL6 (PART 1)(PART 1)

VARIABLES & VALUES VARIABLES & VALUES (PART 1)(PART 1)

PROCEDURES PROCEDURES (PART 2)(PART 2)

FILES & IO FILES & IO (PART 2)(PART 2)

VARIABLESVARIABLES

Variables must be declared (with my), before they can
be used. Or we will get a compile time error, as shown

by the polite ===SORRY!===.

The eject symbol (⏏) shows where the compiler thinks
the problem is.

> $s = 5;

| ===SORRY!=== Error while compiling:

| Variable '$s' is not declared

| ------> <BOL>⏏$s = 5;

> my $r = 5;

5

SIGILSSIGILS
The variable type is decided by the first character,

called sigil. The four types are:
$ Scalar (a single value)

@ Array (several values)

% Hash (several key-value pairs)

& Code (callable code)

The sigil may be followed by a «twigil». We will show *,
indicating a dynamic variable, later.

See for more information.https://docs.perl6.org/language/variables#Twigils

https://docs.perl6.org/language/variables#Twigils

VARIABLE NAMESVARIABLE NAMES
The first character (a�er the sigil and optional twigil) in
a variable name (and any other name; e.g. procedures,
classes) must be a letter (as in whatever Unicode has

decided is a letter) or underscore (_).

The rest can be letters, underscore (_), minus (-),a
single quote (') and digits.

A minus (-) or single quote (') must be followed by a
letter or underscore (_).

VARIABLE NAMES - EXAMPLESVARIABLE NAMES - EXAMPLES

Common sense is advisable, especially before
venturing into the Unicode jungle.

my $r1234; # OK

my $r1234-56; # ERROR - parsed as "$r1234 - 56"

my $r1234_56; # OK

my $r1234-5A; # ERROR - as "5A" is not a number

my $r1234'5A; # ERROR - as "5A" is not a number

my $Große; # OK

my $ßßßßßß; # OK

my $______; # OK

my $㑄㒔; # OK

EVERYTHING IS AN OBJECTEVERYTHING IS AN OBJECT
If you want it to be.

Most built-in functions have a corresponding method:
> say $a;

> $a.say;

> say "Hello";

> "Hello".say;

WHATWHAT
The WHAT method can be used to tell us the type of a

value or variable:

WHAT can be used as a procedure as well: E.g. WHAT 12.

> 12.WHAT;

(Int)

> "12".WHAT;

(Str)

> my $i = 12; $i.WHAT;

(Int)

NUMBERSNUMBERS
If it is without quotes, and looks like a number), it is

either a number:

Or an error:

12 # Integer

12.8 # A number

1.12e+20 # Floating point

2+4i # Complex

12A

1.12e

2+4j

OCTAL, HEX, BINARY ...OCTAL, HEX, BINARY ...
Numbers cannot start with zero, except when

specifying the number system:

Octal: 0o123 or :8<123>.

Hexadecimal: 0x12A39F or :16<12A39F>.

Binary: 0b10101010 or :2<10101010>.
> say :2<0b10101010>

170

> say :40<010100000101111110>

==SORRY!=== Error while compiling:

Radix 40 out of range (allowed: 2..36)

UNICODE NUMBERSUNICODE NUMBERS
Unicode has a lot of characters that are regarded as
numeric. Use them if you want to cause confusion:

Well. You may not feel that confused, if your terminal
or printer support the characters, but what about:

½ # This is a single character.

Ⅷ # A single character (codepoint U+2168)

> say ৯੦੭ + ১; # 907 + 1 (in case you wondered)
908

NOT A NUMBERNOT A NUMBER
If it starts with a letter (or an underscore) it is either a

procedure call, a predefined value, or an error:

«True» and «False» are built-in.

print # -> error: Missing parameter

True # -> True

False # -> False

abcdic # -> error: Undeclared routine

N_U_M_B_E_R_SN_U_M_B_E_R_S
You can add underscores in numbers to make the code

more readable. The compiler ignores them.
> my $number1 = 1000000000

1000000000

> my $number2 = 1_000_000_000

1000000000

> $number2 = 1_0_0_0 # This is legal, but stupid.

1000

STRINGSSTRINGS
String are specified in quotes; single, double or

whatever else Unicode has to offer:

Variables are interpolated, unless single quotes are
used.

> my $name = "Arne"

Arne

> my $hello = "Hello, $name"

Hello, Arne

> my $hello = 'Hello, $name'

Hello, $name

> my $hello = «Hello, $name»

(Hello, Arne)

THE TYPE SYSTEMTHE TYPE SYSTEM
Perl6 does not enforce types, unless we ask it to.

When a variable does not contain a value, REPL will
report the type instead. Any is the most general type,

as it can represent anything.

> my $a;

(Any)

> my Int $i;

(Int)

> $i = "b";

Type check failed in assignment to $i; \

 expected Int but got Str ("b")

NIL & ANYNIL & ANY
Nil is the null value (the absence of a value).

Assign it to a variable to reset it to its default
(undefined) value:

It is possible to use the type instead of Nil, but it has no advantage.

> my $b = "b"; $b = Nil;

(Any)

> my Int $i = 4; $i = Nil

(Int)

CONSTANTSCONSTANTS
Do not use variables for values that should stay

constant:

You cannot change a constant value:

Run time errors do not have ===SORRY!=== (as
compile time errors do).

> constant $pi = 3.14;

> $pi = 3;

Cannot assign to an immutable value

 in block <unit> at <unknown file> line 1

FLOATING POINT NUMBERSFLOATING POINT NUMBERS
Perl6 has several numeric types (in addition to

integers, which we have discussed already).

pi is built in:

The term «floating point» is derived from the fact that there is no fixed number of digits
before and a�er the decimal point; that is, the decimal point can float. Perl6 calls them

«Num».

> say pi;

3.14159265358979

> pi.WHAT

(Num)

FLOATING POINT ERRORSFLOATING POINT ERRORS

This is as expected (with the actual number of 3's
shown as the only surprise).

Adding three of them should give us 0.999999:

But it does not. We do get 1.

> my $one-third = 1/3;

0.333333

> say $one-third * 3;

1

RATIONAL NUMBERSRATIONAL NUMBERS
Perl6 has a built in Rat (Rational Number) type.

The Rat type is automatically used for values with a
decimal fraction, if possible. Otherwise the floating

point type Num is used.

> my $one-third = 1/3;

0.333333

> $one-third.WHAT;

(Rat)

> 0.3.WHAT; # Yes, this is valid syntax!

(Rat)

RAT IN ACTIONRAT IN ACTION
The Rat type uses two integers internally; the actual

value is the first divided by the second.

We can use the nude method to get the values:
(«Numerator» + «Denominator»; «Nu» + «De»)

> (1/3).nude;

(1 3)

> (0.1).nude;

(1 10)

> 0.2.nude; # Without parens

(1 10)

0.333333 ?0.333333 ?
So where does 0.333333 come from?

When we display any non string value, we get a
stringified copy of the value. Perl6 has decided that 6
digits a�er the decimal point is enough - in this case.

The actual number of digits shown may change.

AUTOMATIC TYPE CONVERSIONAUTOMATIC TYPE CONVERSION

Perl6 will automatically convert the values to the
required type, if possible.

> my $string1 = "12"; my $string2 = "13";

> my $sum1 = $string1 + $string2;

25

> $sum1.WHAT;

(Int)

> my $sum2 = $string1 ~ $string2; # String concatenation

1213

> $sum2.WHAT;

(Str)

MANUAL TYPE CONVERSIONMANUAL TYPE CONVERSION
Converting a string to a number:

We could have used the + prefix instead:

Numeric or the + prefix will convert to the best
numeric type for the given value.

> "12".Numeric.WHAT # -> (Int) # Integer

> "12.1".Numeric.WHAT # -> (Rat) # Rational number

> "5e+10".Numeric.WHAT # -> (Num) # Floating point

> +("12").WHAT # -> (Int)

> +("12.1").WHAT # -> (Rat)

MANUAL TYPE CONVERSION (2)MANUAL TYPE CONVERSION (2)
Or use one of the types, if you are sure what you want:

But you will get exactly what you ask for:

> "12".Int.WHAT # -> (Int) # Integer

> "12".Rat.WHAT # -> (Rat) # Rational number

> "12".Num.WHAT # -> (Num) # Floating point

> 12.1.Str.WHAT # -> (Str) # String; "12.1"

> ~(12.1).WHAT # -> (Str) # String; "12.1" # Prexif ~

> "12.1".Int # -> 12

ARRAYS (AND LISTS)ARRAYS (AND LISTS)

Add parens, if it makes you feel better...

Strings must be quoted, as shown above, but we can
use a short form if the values do not contain spaces:

> my @b = "rune", "helge", "tom", "jerry";

[rune helge tom jerry]

> my @c = ("rune", "helge", "tom", "jerry");

[rune helge tom jerry]

> my @d = <rune helge tom jerry>;

[rune helge tom jerry]

LIST SIZELIST SIZE

Compare with the length of a string:

(There is no «length» method.)

We can specify a size limit:

> my $number-of-elements = @d.elems;

> my $number-of-characters = $s.chars;

> my @d[10] = <rune helge tom jerry>;

[rune helge tom jerry]

> my @d[3] = <rune helge tom jerry>;

Index 3 for dimension 1 out of range (must be 0..2)

LIST ELEMENTSLIST ELEMENTS
You can access an individual item by its index:

We can access several items (called an array slice):

> say @d[0]; # And NOT $d[0] as in perl5!

helge

> my @a = 1,2,3,4,5,6,7,8,9,10,11,12,13;

> @a[0 .. 9]; # The same as [0,1,2,3,4,5,6,7,8,9]

(1 2 3 4 5 6 7 8 9 10)

> @a[0,9,2] # They do not need to be consecutive.

(1 10 3)

LIST OF LISTSLIST OF LISTS
Perl6 does not automatically flatten lists (as opposed

to perl5), so the result of adding (with «push» or
«unshi�») a second list of items on to a list, is a list with

one more item - the second list:

Probably not what you have in mind.

> my @list1 = 1,2,3,4,5;

[1 2 3 4 5]

> my @list2 = 1,2;

[1 2]

> @list1.push(@list2);

[1 2 3 4 5 6 7 8 [1 2]]

FLATTENING LISTSFLATTENING LISTS
If you want to insert the individual values of a second
list to a list, use «prepend» (instead of «unshi�» and

«append» (instead of «push»):
> my @list1 = 1,2,3,4,5;

[1 2 3 4 5]

> my @list2 = 8,9;

[8 9]

> @list1.append(@list2); # push the individual values

[1 2 3 4 5 8 9]

> @list1.prepend(@list2); # unshift the individual values

[8 9 1 2 3 4 5 8 9]

FLATTENING LISTS (2)FLATTENING LISTS (2)
Or you can flatten the list itself, by adding a | (vertical

bar) before it:
> my @list1 = 1,2,3,4,5;

[1 2 3 4 5]

> my @list2 = 8,9;

[8 9]

> @list1.push(|@list2); # push the individual values

[1 2 3 4 5 8 9]

LISTS WITHOUT DUPLICATESLISTS WITHOUT DUPLICATES
Use unique to get a copy of the list, without duplicates:

If you know that the list is sorted, use squish instead of
unique:

> (1,1,2,3,4,5,1,6).unique

(1 2 3 4 5 6)

> (1,1,2,3,4,5,5,6).squish # OK

(1 2 3 4 5 6)

> (1,1,2,3,4,5,1,6).squish # Wrong usage.

(1 2 3 4 5 1 6)

LIST ROTATIONLIST ROTATION
List rotations can be done with «push/shi�» (to the

le�) and «unshi�/pop» (to the right), but it is easier to
use the built in rotate:

(1,2,3,4,5,6).rotate; # Left. The same as rotate(1)

(2 3 4 5 6 1)

> (1,2,3,4,5,6).rotate(2)

(3 4 5 6 1 2)

> (1,2,3,4,5,6).rotate(-2) # Right

(5 6 1 2 3 4)

HASHESHASHES

The keys (the le� hand side of =>) can be specified
without quotes - if they do not contain spaces.

We can skip the parens.

Assignment:

And not $population{...} as in perl5.

my %population = (Oslo => 500_000,

 Paris => "unknown",

 "Buenos Aires" => "too many");

%population{"Buenos Aires"} = "too many";

HASH VALUESHASH VALUES

The last one is the same as:

> %population{"Oslo"}

500000

> %population<Oslo> # The same

500000

> say %population<Buenos Aires> # An error

((Any) (Any))

> say (%population{"Buenos"}, %population{"Aires"});

((Any) (Any))

HASH SLICESHASH SLICES
Rember array slices? We can do the same with hashes:

Use grep if the selection criteria is more complex:

> my %translate = (one => "ein", two => "zwei", \

 three => "drei");

{one => ein, three => drei, two => zwei}

> say %translate{"two", "one"}

(zwei ein)

> say %translate<two one> # This does not work on arrays.

(zwei ein)

> %translate{%translate.keys.grep(*.chars == 3)}

(zwei ein)

HASH LOOKUPHASH LOOKUP
How do we check if a value is present in a hash?

All of them evaluates to False in boolean context.

Use the :exists adverb:

> my %h;

> %h<a> = 0; # => 0

> %h = False; # => False

> %h<c> = Nil; # => (Any)

> %h<a>:exists # => True

> %h:exists # => True

> %h<c>:exists # => True

> %h<d>:exists # => False

HASH DELETIONHASH DELETION
Use the :delete adverb to delete entries from a hash:

The deleted value or values are returned.

> my %h = a => 1, b => 2, c => 3

{a => 1, b => 2, c => 3}

> %h<b c>:delete

(2 3)

> %h<a>:delete

1

HASH DUPLIATE VALUESHASH DUPLIATE VALUES
Hashes (obviously) do not allow duplicate values with

the same key:
> my %hash;

> %hash<M> = 12;

> %hash<M> = "nobody";

> say %hash<M>

nobody

HASH DUPLIATE VALUES (2)HASH DUPLIATE VALUES (2)
But we can get around that by using a list as the value,
adding new values to it. We can do this automatically

with push:
> my %hash;

> %hash<M>.push(12);

> say %hash<M>

[12]

> %hash<M>.push("nobody");

> say %hash<M>

[12 nobody]

> say %hash<M>[1];

nobody

HASH DUPLIATE VALUES (3)HASH DUPLIATE VALUES (3)
But we must do this from the start, as the first push

will remove any scalar value already there:
> my %hash;

> %hash<M> = 12;

> %hash<M>.push("nobody");

> say %hash<M>

[nobody]

HASH KEYSHASH KEYS
keys gives (a list of) all the keys:

We can use kv (for key-value) instead:

for %population.keys -> $city

{

 say "City $city has %population{$_} people";

}

for %population.kv -> $city, $population

{

 say "City $city has $population people";

}

HASH VALUESHASH VALUES
keys gives the keys in random order. If we want order,

sort them:

values gives all the values:

There is no way to start with a hash value and get back
to the key.

> for %population.keys.sort -> $city { ... }

for %population.values -> $population

{

 say "Unknown City with %population{$_} people";

}

ADDITION, FIRST TRYADDITION, FIRST TRY
We can add the values:

This will give a run time error because of our string
values ("unknown" and "too many"):

my $total = 0;

for %population.values -> $population

{

 $total += $population;

}

Cannot convert string to number: base-10 number must begin

with valid digits or '.' in '⏏too many' (indicated by ⏏)

THE «SUM» METHODTHE «SUM» METHOD
We can use the sum method instead of looping

through the values:

And again, this fails because of the non-numeric
values.

File: population-sum (partial)

my $total = %population.values.sum;

WITH TYPE CHECKWITH TYPE CHECK
We can check that the value is an Int, before adding it:

~~ is the «smartmatch» operater, which can be used to
compare almost anything with almost anyting else.

Here it means «is $population an Int?»

File: population-smartmatch (partial)

for %population.values -> $population

{

 $total += $population if $population ~~ Int;

}

GREP AND TYPE CHECKGREP AND TYPE CHECK
We can use grep to get rid of illegal values, before

applying sum:

When the first character in a grep code block is * (a «whatever star») we do not use curlies!

my $total = %population.values.grep(* ~~ Int).sum;

TYPE CONSTRAINTSTYPE CONSTRAINTS
Negative integers should be ignored.

A type constraint is the thing, but this is illegal:

We can make a new type with «subset», and use that:

We could have used a type constraint on the hash (the values): my PositiveInt %population
instead, if we got rid of the illogical (and now illegal) values.

$total = %population.values.grep(* ~~ Int where * > 0).sum;

File: population-grep (partial)

subset PositiveInt of Int where * > 0;

my $total = %population.values.grep(* ~~ PositiveInt).sum;

THE FULL PROGRAMTHE FULL PROGRAM
File: population-grep

my %population = (Oslo => 500_000,

 Xyflwizz => "unknown",

 Somewhere => -100,

 Paris => 5_000_000,

 "Buenos Aires" => 10_000_000);

subset PositiveInt of Int where * > 0;

my $total = %population.values.grep(* ~~ PositiveInt).sum;

say "Total population: $total";

END OF PART 1END OF PART 1

This presentation is available online:

PART 2PART 2
https://npw2018.perl6.eu/

http://perl6.local/kurs/html2/p6-2.html
https://npw2018.perl6.eu/

